Machine Learning and Data Mining – MLDM
Course Coordinator: Fotios Kokkoras, ECTS: 7.5, Semester: A (C)
Syllabus
- Machine Learning (what it is, why we care, examples of problems, historical review, algorithm categorization).
- Machine Learning System Design, Machine Learning as Search, Inductive Learning Hypothesis, Inductive Bias.
- Classification/Interpolation Trees, (Generation, Evaluation, Interpretation), Generalizations/Extensions (Random Forests).
- Data Mining Systems (Rapid Miner, Weka).
- Case-Based Learning (k-NN, k-NN weighted distance), Case-Based Reasoning
- Bayes Classifiers,
- Support Vector Machines.
- Clustering (divisive algorithms, hierarchical algorithms, density-based).
- Association Rules.
- Neural Networks (for classification or interpolation).
- Combination of multiple models (Bagging, Boosting, Stacking).
- Deep Learning, Deep Neural Networks.
- Quality management in knowledge mining (evaluation of classification methods, model complexity (bias – variance), measures of interest of association rules, clustering validity, classification and interpolation evaluation metrics, ROC analysis).
- Knowledge mining on the World Wide Web (opinion mining, sentiment analysis, fraud detection), shopping recommendations as an application of machine learning.
- Data Mining: an overview of mining tasks, mining as an application of machine learning algorithms.
Recommended Bibliography
- Pang-Ning Tan, Michael Steinbach and Vipin Kumar, “Εισαγωγή στην Εξόρυξη Δεδομένων – 2η Έκδοση“, ISBN: 978-960-418-813-0, Εκδόσεις Τζιόλα, 2018 (Ελληνικά / ΕΥΔΟΞΟΣ: 77107675)
- Κ. Διαμαντάρας και Δ. Μπότσης, “Μηχανική Μάθηση“, ISBN: 978-960-461-995-5, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ ΕΠΕ, 2019 (Ελληνικά / ΕΥΔΟΞΟΣ: 86198212)
- Ethem Alpaydin, “Introduction to Machine Learning – Fourth Edition”, The MIT Press, 2020
- Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. 2nd Edition, Bing Liu, Springer, 2011
- Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας και Η. Σακελλαρίου, “Τεχνητή Νοημοσύνη – 4η Έκδοση“, Εκδόσεις Πανεπιστημίου Μακεδονίας, ISBN: 978-618-5196-44-8, 2020 (Ελληνικά / ΕΥΔΟΞΟΣ: 94700120)